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SUMMARY 
A perturbation theory is developed for the effects of rotation on stably stratified flow over mountains at low 

Froude number, F = U o / ( N H )  where N is the buoyancy frequency, UO is the wind speed and H is the mountain 
height. The Rossby number, WO = Uo/(f D )  where f is the Coriolis parameter, and D the along-wind length of the 
mountain, is assumed to be a large number. The mountain width, BD,  is assumed to be larger than D. Qpically WO 
is found to lie in the range 3-10. The results are compared with the recent numerical simulations. It is found that as 
the flow impacts on the mountain, in the northern hemisphere it turns to the left (with your back to the wind); also 
wave activity over the top of the mountain is greatest on the left side but the pressure drop is greatest on the right 
in the northern hemisphere. Over the Rossby deformation distance, LR,  of the order of H N /  f ,  e.g. 150 km for the 
Pyrenees, a new wake structure develops that can extend downwind over 1000 km (or a spin-down distance). There 
is a momentum defect within the wake but the wind speed increases either side of the wake. Coriolis forces induce 
a deflection upwards of the isopycnals (and hence more precipitation) on the left, and downwards on the right; 
this is consistent with some of the differences in mesoscale weather and climate phenomena that are observed on 
the different flanks of elongated mountains and between the different side of wide valleys, and also in the wakes 
downwind of mesoscale convection cells. The large perturbation pressure change predicted by the theory is of 
the order of p U t / F  (where p is the density), which is consistent with the magnitude of the terms introduced into 
the recent European Centre for Medium-Range Weather Forecasts orographic parametrizations, but it should be 
noted that these large Rossby-Froude orographic effects on drag and wave flux are asymmetric with respect to the 
mountain’s centre line. The theory shows how ‘lift’ forces on the mountain are caused, and how these are related 
to circulation in horizontal planes around the mountains. 
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1. INTRODUCTION 

Research into low-level atmospheric flows is not only necessary to improve nu- 
merical weather prediction and general circulation models but also for improving our 
insight into these flows to help forecasters and climatologists. The effects of mountains 
on weather over 500 km downwind is still not well understood. Qualitative accounts 
of mountain meteorology tend to focus on the balance between inertial effects, buoy- 
ancy forces caused by thermal stratification, turbulent shear stresses and boundary-layer 
effects such as separation (e.g. Scorer 1978). However, Manley (1952) comments that 
these effects do not satisfactorily explain some notable variations of British climate on 
scales of the order of 50 km, in particular their asymmetrical patterns over orography in 
relation to prevailing wind direction. Neither climatological textbooks nor forecasters’ 
handbooks (Meteorological Office 1993) suggest that Coriolis forces affect the local 
meteorology on this scale. 

The principal difficulty in the approximation of the effects of mountains in numerical 
weather prediction (NWP) or global circulation models (GCMs) is that many of the 
details of the mountains’ shapes are too small to be represented by calculations on the 
coarse grids typical of global weather or climate models, currently ranging from 50 to 
300 km. The theoretical models used as a basis of current subgrid-scale calculations 
were derived for flows where the Froude number (IF = U o / ( N H ) )  is greater than 1.0; 
here Uo is the approach wind speed, N is the buoyancy frequency and H the height of 
the mountain. However, for most large mountains, where H - 1 km and Uo 5 10 m s-l, 
* Corresponding author, present address: Departments of Space & Climate Physics and Geological Sciences, 
University College, Gower Street, London WClH OAH, UK. 
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N - s-l, there are many situations where F 5 1 and where most of the flow below 
the mountain top has to pass round the mountain (Sheppard 1956). 

To represent this parameter range Lott and Miller (1997) introduced into subgrid- 
scale orographic modelling some of the results of research into flow around mountains 
at low Froude number (e.g. Baines 1995). However, their derived algorithms for the total 
drag force on the flow, FF, do not formally account for the fact that in atmospheric flows 
over large mountain ranges rotational effects are also important, i.e. the Rossby number, 
Ro - 1-10 (Miller, private communication), where Ro = U o / ( f D ) ,  f is the Coriolis 
parameter and D the along-wind length of the mountain. 

Numerically this low-Froude-number parameter range has been studied by Peng Li 
et al. (1995) and Olafsson and Bougeault (1997; hereafter OB2) who considered cases 
where Ro is finite, and by Olafsson and Bougeault (1996; hereafter OB 1) and Miranda 
and James (1992) for cases where Ro = 00. The only theory with which they compared 
their data was the linear theory for F >> 1. They disregarded the asymptotic theory for 
F + 0 of Drazin (1961), because it did not account for any of the observed wave motion 
above the hill or for the separated flow. 

Recently an approximate quantitative model has been proposed by Hunt et al. (1997; 
hereafter HFLGM) for F << 1 that accounts for these omissions. It includes firstly an 
analysis of the wave motion and ‘potential’ vertical vorticity (or PV) ‘banners’ (Aekido 
and Schar 1998) generated in the thin top layer, [TI, as if by a ‘cut-off’ hill whose 
thickness H *  is about equal to FH. This theoretical estimate of Drazin (1961) has now 
been supported by many laboratory, field and numerical experiments, e.g. Snyder et al. 
(1985) and Smolarkiewicz and Rottuno (1989). The positive and negative PV in [TI 
is dynamically connected to the horizontal vortex flow in the separated wake flow of 
the middle layer, [MI. The value of H *  is determined by matching the asymmetric 
pressure distribution in these two layers. Most of the drag force F*,, is produced by the 
separation-induced low pressure in [MI, when F << 1. The ‘cut-off’ hill approximation 
was used successfully for calculating mountain waves in the recent Mesoscale Alpine 
Project (Doyle, personal communication). 

These mountain flows in the realistic parameter range F << 1 and 1 << Ro < 00 are 
modelled here by approximating the shedding of vorticity into the wake by that from a 
porous mountain with distributed drag, a hypothesis first introduced by Taylor (1944) 
and developed by Newley et al. (1991; hereafter NPH). Shutts’ (1998) orographic flow 
calculations based on semi-geostrophic theory for F << 1, Ro > 1 for inviscid flow, 
without allowing for the shed vorticity, are broadly consistent with the results derived 
here on the upwind side of the mountain. 

The physical concepts and numerical results of flow around and downwind of a 
mountain also help explain the flow around convective systems (Browning and Ludlam 
1962; Hunt et al. 1996), based on fluid mechanical studies of shedding of vorticity from 
jets and plumes in cross flows (e.g. Coelho and Hunt 1989). 

Finally, the model enables us to derive an estimate for the transverse or ‘lift’ force 
produced by a mountain on the flow perpendicular to the approach flow direction (cf. 
Mason 1977; Smith 1979; Lott 1999). A report is available from the authors describing 
the mathematical analysis and the results in more detail. 

2. GENERAL ANALYSIS FOR THE FAR FIELD OF AN ISOLATED MOUNTAIN 

(a) Assumption and nomenclature 
The main assumptions in the perturbation analysis (expressed in Cartesian coordi- 

nates defined in Figs. 1 and 2) for the strongly stratified rotation flow far from an isolated 
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Figure 1. Definition sketches of the Froude and Rossby 'domains' a)~, a for stably stratified flow over 
a mountain where the transverse width, 'PO,  is much less than the Rossby deformation distance, LR. (The 
dimensionless Froude number is small anJthe Rossby number is large so that the boundary between Z+ and a 

is far from the mountain.) See text for further details. 

Y 

Figure 2. As Fig. 1, but here PD is much greater than LR, so that Coriolis effects are significant near the 
mountain in Z+. 

mountain (or seamount) is that it is produced by effective along-wind and crosswind 
forces on the flow F> and G> and: 

(i) the flow is incompressible and the Boussinesq approximation is valid (thus 
ignoring the compressibility effects considered by Smith (1979) and by OB2); 
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Radiation of Lee Waves 

Boundary of separated region 

Figure 3. Definition sketch for flow over a mountain at low Froude number, i.e. F << 1, in the Froude domain 
where rotational effects are negligible, i.e. !& >> 1 (from Hunt et al. (1997)). See text for details. 

(ii) the upwind flow Uo is uniform, so that shear effects on the mountain (which can 
be significant (cf. HFLGM) are neglected); 

(iii) there is a uniform upwind density stratification po(z*) so that N 2  = (-gape/ 
ih*)/poo is a constant, where poo = po(z* = 0), !2 is the rotation rate and f = 2Q; 

(iv) vorticity is generated near the mountain, and is advected downwind. This is 
effectively modelled as a distributed body force R* per unit volume with along-wind 
and crosswind components (the effect of surface friction is discussed later in section 5); 

(v) the parameter range is defined geometrically in terms of the maximum mountain 
height H ,  the half-length (in the flow direction) D, and breadth at each height /3(z*)D. 
Note = /3 dz*/ H .  The inertial-buoyancy force balance is defined by F (based on 
the height H )  or its inverse, the stratification parameter, S, 

viz. F = 1/S = U o / N H .  (1) 

This parameter characterizes the flow in the Froude domain, a, near the mountain, see 
Fig. 3. It is assumed that F << 1, or S >> 1 in the analysis. Over large mountain ranges it 
is generally found that 0.1 < F 5 0.4. 

The inertial-rotational force balance is defined by the Rossby number or its inverse, 

viz. Ro = 1 / ~  = U o / f D  >> 1(- 1-2.5). (2) 

It is assumed here that Ro >> 1 or E << 1. Typically for the Pyrenees or Himalayas Ro 
lies in the range 1-2.5. 

H is assumed to be small compared to D. The Rossby deformation scale LR 
(= H N / f ) ,  which is assumed to be large compared to D, characterizes the flow far 
from the mountains in the Rossby domain, DR. Note that the dimensionless scale ILR = 
L R / D  >> 1. In the atmosphere if H - 1-5 km, LR - 100-500 km - 1OD - 102H for 
typical mountains. If the width BD is comparable with LR then the flow in & affects 
the flow near the mountain in a. 
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In our notation the total forces acting on the mountain are 

F;, G; = Icom IN R* dx* dy* dz*, 

where the equivalent body force per unit volume is 

(F, G)(x, y ,  z), (3b) 

and x ,  y, z = ( x * / D ,  y*/D, z * / H ) .  Thence drag and ‘lift’ coefficients at each level ( z )  
are related to the dimensionless width B(z) (see Fig. 1) by 

(3c) 
(IFl, IGl) dx dy = {CD(Z>, CL(Z))B(Z> for 0 < z < 1 

= O  for 1 < z .  

These coefficients can be estimated from the calculated or measured pressure distri- 
bution around the mountain and its slope (Vosper and Mobbs 1997). In these calculations 
we only consider situations where the approach flow is normal to symmetrically shaped 
elongated mountains. This means that the main force on the flow is in the x direction, 
and G is much less than F. Because the calculations are linear the effects of G can be 
considered separately from those of F (as in sections 2(d), 3(c), 4,5, and 6).  

For calculating the flow upwind or downwind from the centre of the mountain 
outside the region of resistance where Ix I >> 1, only the integrated effect of the resistance 
needs to be considered, so that 

-- 
F, G -cD, cLw)&~, z ) ,  &, z ) }  for z < I ,  ( 3 4  

where are averaged values of CD, CL(Z) over the cross- 
section of the mountain (normal to the flow), and the delta function 6 ( x )  and drag and 
lift variables F ,  G are normalized so that 

= $ CD(Z)~(Z)  dz and 
* *  

h 

co 
6(x)dx=1,  il[I{g} d y d z = l .  

* A  

The orders of magnitude of G, CD and F, F and their variations with aspect ratio 
are estimated to be 

h - 
CD CD 1 and Frn 1, F^- 1 if rv 1; 
- (30 
CD - and F - I/S if g >> 1. 

For flow through a porous region where the velocity components are Uo(1 + u ,  v ,  w )  
the normalized drag and lift distributions CD F and CLG are determined by the x and y 
components of the resistive force. This is proportional to the square of the local mean 
velocity at each location in the resistive region where the ‘resistivity’ (see NPH) is 
defined as XD in the x direction and XL in the transverse (y) direction 

-* -2 
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(b) Governing equations 
Denoting dimensional perturbation variables as ( )+, the components of the velocity 

field are U* = (Uo + us ,  v+,  w+). The pressure perturbation is p +  and density per- 
turbation is pf . Normalizing these variables on Uo, pooUi, ( p o o N 2 H / g )  respectively, 
normalizing the coordinates as in (3b), and invoking the 'hydrostatic' approximation 
because D >> H and S >> 1 (Gill 1982, p. 159), the linearized momentum equations for 
the time-averaged flow over the whole flow field, including the region of distributed 
resistance are 

(44  
(4b) 

uX = - p x  + E V  + F 
U ,  = -py  - E U  + G 

0 = - p , - S a  2 

u x  + v y  + w, = 0 

a, = w, where 0 = -pS/(pooN2H/g). (4e) 
Here F and G are defined in terms of u ,  v by (3g); a is both density perturbation 

and the vertical streamline displacement. Note that from (4a), (4b) the perturbation to 
the vertical vorticity w = vx - u y ,  is given by: 

(40 
Then integrating, from far upstream (in both domains .3& and a), we see that the 
normalized perturbation to the PV, ( 8 ( P V )  defined as (a* + f)(apm/az + apf/az)) is 

W, = ED,, - Fy + Gx. 

6 ( P V ) = w - E a z = -  Lrn FY dx + G. (4g) 

These coupled equations can be reduced to higher-order equations for each of the 
horizontal velocity perturbations (u,  v )  and the streamline displacement B ,  in terms of 
F and G, as follows: 

and 

where the operator 
U' + v y  + a,, = 0, 

a2 a2 
' Y  s2az2  s2 az2ax2 xY ax2 a$ (5e) L = V  2 +--+-- e2 a2 1 a4 and V 2 =-+-. 

The boundary conditions for these equations are that: (i) a = 0 on z = 0; (ii) au/ax, 
av/ax, v + 0 as x2 + y2 + 00; (iii) wave flux is upwards as z + 00 in a, and 
JuJ + 0 as z + 00 in a; (iv) JuJ + 0 as x + -00; but, because of the form of (5a), 

Note that for a mountain that is symmetrical about its centre line (y = 0), F is symmetric 
to leading order. Therefore u is symmetric, while v and a have antisymmetrical compo- 
nents. Since, from (3g), G depends on v ,  to first order it is non-zero and has symmetric 
and non-symmetric components. 

IuI # O  a s x +  00. (6) 
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( c )  Drug-induced perturbations for 2 ) ~  
Consider the form of (5) away from the mountain but within a distance LR,  i.e. when 

1x2 + y21 >> 1 but ( x 2  + y2)/Lk << 1. Then (below [TI) (5) becomes (to leading order) 
for the drag perturbations 

where S ( x )  = sf, 6 (x) dx is the Heaviside step function. 
To understand the forms of the solutions for narrow and broad mountains (i.e. 

B << 1; /3 2 1) we consider the simplest possible mountain with a rectangular cross- 
section whose resistance and approximate shape is given by y = f/I(z)/2,  IzI < 1. 
Then 

?= (1/F){X(y + /I/2) - X ( y  - 8/2)} where, to satisfy (3e), = /I dz. (8) 

We introduce a symmetric (image) solution below z = 0 in order to satisfy the 

Using the standard Green's function solution for the two-dimensional Laplace's 

s,I 
boundary condition (6a) that Q = 0 on zero. 

equation, (7a) leads to 

+n [X ( Y  + ;) - X  ( Y  - ;)I]. (9) 

Thus in the central wake, where IyI << /I/2, near the mountain, where /I >> x > 0, 
u = - G / 2 F ;  and further downwind where x >> /I, u = -CD//I. See Fig. 4(a). 

Since G o( F, this shows how in the central wake u is independent of the aspect 
ratio B in this approximation. The solutions in (9) have previously been compared with 
bluff-body wakes for neutral and stratified flows (NPH). 

Similar solutions show that to leading order, as with other bluff bodies, the maxi- 
mum transverse velocities produced by the drag forces are antisymmetrical and occur at 
the outer edges of the mountain where y = f/?. 

Calculations for the vertical deflection of the streamlines show that they are negative 
far downwind (for most mountain shapes). This is consistent with usual low-Froude- 
number flow through a resistive region (e.g. NPH). 

for the [MI layer, which has a drop across the 
mountain associated with the drag, is given from (4a), p = --u + lf, F dx. So that 
for a mountain, whose resistance is as defined in (8), on y = 0, 

- -  

The pressure distribution in 

Thus p + 0 as Ixl/B + foo. 
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( d )  Lift-induced perturbations in % 
The lift force G ( x ) ,  which is proportional to the transverse velocity v ,  leads to 

a horizontal velocity perturbation, with components u(~), v ( ~ ) ,  and a corresponding 
vertical vorticity dL). The asymptotic expansions of u ,  v and u(~), dL) have to be 
defined in powers of S-' and E ,  in order to match with the flow in a, i.e. v = 

The expression for the distributed lift force in (3g) shows that it depends on the 
transverse velocity component impinging on and passing through the porous mountain 
which is derived in section 3. It is convenient to expand G as a series: 

vo+S- 'v1+. . .  . 

An approximate model for the variation of v is used (especially that describes its 
2 

increase towards the edges) to calculate CL,,, C L ~  and G ,  namely 

where vo,, 2: (G/4nB) ln(B2) is the maximum value of vo in a. 
To the next order in S-' we consider the lift caused by a net positive transverse 

velocity Ti over the mountain (and, for a porous mountain, through it) caused by the 
Coriolis effect in the far field. This is approximately equal to 

and varies little over the cross-section of the mountain. For wide mountains where 
8 > LR >> 1, F i  N U o / 3 ;  therefore, 

and 

In the near field DF, the solution to (7a) for the leading-order term in u ( ~ )  is 

This is consistent with (4g) which shows that negative and positive values of the 
transverse force G at y = f 8 / 2  produce a negative and positive transverse vorticity at 
the edges of the mountain, i.e. a further slowing down over the mountain and speeding 
up outside the outer edges. 

Since G1 is similar in form to F ,  u y )  is the same as the solution to (7b) for vo. 
Then, far downwind the net lift force on the mountain produces a net change in 

vorticity around the mountain over a distance 8 D and a greater speed-up over the left 
side of the mountain and on the left side of the wake. The lift force also induces an extra 
cross-flow perturbation ~ ( ~ 1 .  Over the mountain the leading-order antisymmetric term 
( v t ) )  causes amplification of the lateral and downwind velocity around the edges by 
about 1 /6. 

2 2 
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3 .  SOLUTION FOR THE ROSSBY DOMAIN 

(a)  Re-scaling 
When the Coriolis terms in the equations are considered and ( x 2  + y 2 ) ' / 2  - LR >> 

1, the horizontal coordinates require re-normalizing on the new scale (as in NPH), i.e. 
X = ( E / S ) X ,  Y = ( c / S ) y ,  since the vorticity shed into the wake by the mountain in the 
region is advected downwind into &. The analysis also covers the case where the 
width is so great, i.e. BD >> LR, that the mountain extends 'sideways' into a. The 
expression (3d) has to be re-expressed in terms of the new coordinates (and a re-scaled 
delta function) as 

For the case of mountains with uniform resistance across each level defined by (8) 

A 1 
F(R) = = { a ( y  -k BR) - s ( y  - BR)), (14b) 

B 
where the re-scaled half width, BR, is given by BR = /3/2ILR, and B dz. Note that 
F = 0 for z > 1. For far-field calculations of u,  v, it is convenient to assume a 'top-hat' 
mountain cross-section so that /3 is constant for IzI c 1, in which case = B .  

= 
A 

(b) Perturbations caused by the drag 
When the Froude number is very small (i.e. 9 >> I), the far-field perturbation caused 

by the resistive drag (i.e. the component F of R*) is described by solutions which can 
be expanded as asymptotic series in powers of S-' . The leading terms for u,  v, a, p are 
respectively uo, vo, s-lao, Spo.  

Note that here we take the width of the mountains to be comparable with LR,  
i.e. BR = 0(1), whereas in NPH it was assumed that the width of the mountain is 
comparable to its length, so that BR = O(Z/JLR). From (5) and (14), these terms satisfy 
the following equations 

Also the continuity equation leads to 

(16) 
a2ao 

a u o / a X  + avo/aY = 0 and a u l / a X  + a v l / a Y  = -%. 

Note uo, v1, 01, p1 are symmetric, while vo, 00, po are antisymmetric. From (4) it 
follows that in & (which excludes a) 

pox = vo, PO, = -uo, uo, = a o y ,  ( 17a) 

U l y  = - ~ o ~ z ,  PlX = v1 - uox, 6 1  = -p1,.  ( 17b) 

and for the first-order terms 

Note that when calculating p in & and integrating (17) from far upwind we need 
to match with p in a, as defined in (10). Equations (17) show that UO, vg are in 
geostrophic balance with the asymmetric pressure PO,  but their accelerations cause 
inertial forces and thence an ageostrophic symmetric pressure field p1.  Note that to 
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leading order the perturbation velocity lies in horizontal planes (from (17a)), but to the 
next order the vertical velocity is significant. 

We obtain analytical solutions for the case of a mountain with a top-hat drag profile 
defined by (14a) and (14b). The effects of lift forces are considered later. We find from 
the three-dimensional Green's function solution (following the method of NPH) 

where, for the arguments a = X, b = Y(j) ,  c = z ( j ) ,  the function 

ac { b(a2 + b2 + c2)ll2 
U ( a ,  b, c) = tan-'(clb) + tan-' 

and 

y(') = y(2) = y + BR, y(3) = y(4) = y - BR, 

z(l) = z(4) = z + 1, p) = z ( 3 )  = z - 1. (18c) 
In considering the first three terms of the series for the streamwise and transverse 
velocity components, one notes that u1 is zero (if G = 0), but at second order u2 # 0. 
The transverse components vo, v1, can also be expressed as a sequence of expressions: 

where 

'%(a, b, c )  = ln(c + d-'), 
%(a, b, C) = 

-cb 
(c2 + a2)(a2 + b2 + 

and Y(j), z ( j )  are defined as in (18c). 

from uo using (18a), whence, 
The leading-order term for the pressure perturbation, defined by (17a), is calculated 

Although this integral cannot be expressed in closed form, approximations to it can be 
derived. As X -+ -00, po -+ 0, but as X + 00 

where 

d = Y(j ) (Y  = 0), 
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The leading terms for the vertical displacement 00, q ,  which are defined in terms 
of uo by (17a), follow from the expression (18a): 

where 
1 1 E(a, b, c) = - ln(b2 + c2)  + - In (F) 

0 2 2 q + a  ' 

where q = l/a2 + b2 + c2 and 

ab  ' 1 = (a2 + c2)(a2 + b2 + c2) * 

(c) Descriptions of the solutions of the perturbations 

(i) Streamwise perturbations. The results (20) to (22) are applied to mountains with 
very elongated shapes where 

So that the results can be compared with those near the mountain in BF, the formulae 
are presented in the same normalized coordinates (x, y ,  z )  used in section 2, which are 
scaled on D. On the symmetry plane y = 0 

- ILR 5 1. The results are presented in Figs. 4 and 5. 

1 1) * (23) 

XLR 

XLR 

(8/2){(x2 + (8/2)2 + IL& + 1)2)'/2 

(8/2){(x2 + (8/2)2 + IL& - 1)2)'/2 

+ tan-' 

[ +tan-' 

In the case where the width of the mountain is comparable with the Rossby radius, 
i.e. /? 2 ILR, from (23) it follows that when 

However we note that the magnitude of the defect on the centre line (for given G/B 
which is independent of #?) is about 50% of the value of that for a rounded mountain 
where uo = -(G/B). 

It is at the edges of the wake where the main differences occur with wakes in non- 
rotating flows and in rotating flows, where the mountains are rounded. Just inside the 
wake edge on the surface, at z = 0, where 

8 /2  >> (8/2 - Y >  ' 0, 
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Figure 4. Theoretical profiles of the along-wind velocity perturbation, u+, in the wake at z = H / 2 :  (a) showing 
schematically the transition from their generally negative form (i) in the Froude domain, a, to their form (ii) in 
the Rossby domain, a, (when b >> LR) where the peak negative value occurs near the edge and there is a 
positive speed-up outside the wake; (b) comparisons between results from the perturbation theory for a rectangular 
mountain and computations of Olafsson and Bougeault (1997) for a smooth ellipsoidal shaped mountain assuming 
L R / ( B D )  = 0.5 and C D / ~  = 6. The right-hand axis gives the full wind speed, U*, assuming UO = 10 m s-' ; 

(c) maximum positive velocity perturbation outside the wake in a. See text for details. 

So that near the mountain, where x 21 0, if /3/2 = ILR, 
- 

and, very far downwind, where /3/2 << x, 
- 

cD {' + !. tan-'(1/2) uO=-B 2 
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Figure 4. Continued. 

see Fig. 4(a)(i) and (ii). Thus very close to the mountains (i.e. x = 0) and far downwind 
the difference between the edge and centre-line defects is less than 30%. But the 
solutions (24) and (25a) also show that over a downwind distance comparable to LR 
the edge defect is 100% greater than the centre-line defect. At the outside edge of the 
wake where 

B/2 >> (Y - B/2) ' 0, 

This means that near the mountain where x << #?/2 2 ILR and very far from the 
mountain, where 8 / 2  rv ILR << x, 

respectively. Figure 4(c) shows the variation of the maximum speed-up with LR. 
Thus for wide mountains the flow speeds up outside the wake; in the limit of a 

mountain much wider than the Rossby radius (i.e. /3 >> LR) the velocity excess could be 
as large as the defect (rvG(1/2P)). But for the case considered here, where P/2 2: LR, 
comparing (2%) and (26b) shows that the excess velocity very far downwind is about 
50% of the maximum defect. Note that the magnitude of the maximum speed-up is 
independent of f, but its location is not. 

Inspection of (20) shows that, as on the centre line, there is a significant decrease 
both in the defect and in the speed-up near the mountain top. Both continue to decrease 
upwards to a height of the order of X/LR (see NPH). This forms the characteristic 
'hyperbolic' wake of a mountain in a stably stratified rotating flow. 
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Figure 5.  Theoretical pressure perturbations and vertical deflections in the wake, showing how the largest effects 
are asymmetric and persist downwind (with low pressure on the right). (a) pressure including the symmetric first- 
order terms which decay in a distance of the order of LR; @) vertical deflection in the Rossby domain (perturbation 

theory and computation of OB2). See text for details. 

(ii) Trunsverse velocity perturbation. The solutions (19) for the first two terms of the 
expression for u can be simplified. For very wide mountains (8/2 >> LR) on the plane 
z = 0 (for x 2  + y2 >> I,;) 1 .  (27) L x2 + (y + 8/2>2 Jx2 + (y - 8/2)2 

-1  1 + 
- 
C D  

2n8 
1)O 2 - * LR * 

Thus the maximum lateral velocity at the edges of the mountain, where y 2 f @ / 2 ,  is of 
the order of CDUO. 

When ,/- << LR, and when the hill’s width is less than the Rossby scale (i.e. 
8 /2  << LR), the expression (27) matches with the leading-order term in %. 
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In both domains (for all values of the ratio /!?/(2LR)), at all downwind planes, 
the cross wind velocity (uo) has its largest value at, or downwind of, the edge of the 
mountain where y = fB/2 .  Near the mountain’s centre (where 1x1 << l), uo has its 
maximum value for rounded mountains, i.e. where 

But uomx 2 (G/2n/?) ln(LR) when j3 >> LR; this is significantly larger than the maxi- 
mum velocity defect uomx given by (25). 

In terms of the downwind variations, vo is maximum on the plane x = 0, and in 
decreases with distance in proportion to r P 2  (where r2 E x 2  + y2), as compared to the 
slower decay rate of r-l in e. This is because in a, uo decreases with height over a 
distance z - ,/m/IL;, i.e. within the ‘wake’ referred to above. 

The first-order term for the cross-flow ul (or ‘barrier jet’; Shutts 1998) is symmetric, 
and decays downstream to zero. Thus the largest value of the cross-flow is at the origin, 
where 

v1 increases until the width of the mountain is comparable with LR (for given CD/B). 
Near the mountain, where Ix I << 1, u1 has its maximum value towards the top of the 

mountain but further upstream or downstream it is near the surface. 
From (27) it follows that the horizontal deflections of the streamlines are of the 

order of LR, and are at a maximum at the edge of the mountain. NPH showed how the 
lateral deflection of the streamlines Ay+ normalized on D can be calculated from the 
perturbation solution. From (19) it can be shown that far downwind to leading order, the 
asymmetric and symmetric components of Ay+ are given by: 

where 

both terms are of order (CD//?)LR, when /3 - LR, but only the latter produces a 
significant net displacement along the centre line. 

(iii) Pressure. In the far field when X/LR -+ 00 = 0, 

Note that on x = 0, po is exactly one half of this value, i.e. po(0,  y ,  z )  2 ipo(00, 
y ,  z ) .  Also note that for wide mountains where B / 2  2 LR, po has a maximum and 
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minimum value p ~ ~ ~ , ~ ~ ~  where y 2: fB/2,  
- 

PO,,,~~~(OO, y = fB/2,0) = f- 4x8 cD (28 - ILR tan- ' ( ? ) + l n ( l + $ ) / .  (32) 

For more rounded shapes these maximudminimum positions are closer to the centre. 
The pressure decreases outside the wake on a length-scale LR irrespective of the width 
of the mountain. The vertical decrease of po with height has a similar profile to that of 
UO. 

In order to estimate how po varies in the wake, an approximation to the integral 
(22a) can be constructed. This is because uo does not vary rapidly, either across or along 
the wake, so that it can be averaged between the centre line and edge values. For a wide 
mountain where /3/2 2 ILR 

1 
2 PO@, Y t  z )  2: - (6) -Iuo(x, Y = 0, z )  + uo(x, y = 8/27 z)l  for x > 0, lyl 6 8/2  

(334 

Upwind of the mountain the pressure decays with x also on a length-scale LR so 

Thus the leading-order pressure perturbation in & is positive everywhere for y > 0 
and negative for y c 0. It rises continuously until it reaches its asymptotic value where 

In a dimensional form, the first-order pressure term p1 in & is of the same order 
(namely p U $ G )  as the leading-order pressure in DF and, therefore, they should match 
near the mountain. (We recall that the leading-order pressure changes are much larger 
than the pressure changes near the mountain.) As explained earlier, p1 is calculated most 

x -ILR. 

simply by including the body force in the equation for &. It follows that the integral of 
(17b) is 

Integrating this expression, we find: 

(3W 

Note that this is consistent with the drag, i.e. JJ{p(x E -1) - p ( x  2: +1)} dy dz = CD. 
Also pi (x, 0, 0) + 0 as (x/LR) + -m. 
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Since tan-' a + tan-'(l/a) = n/2, as Ixl/,/Li + (/3/2)2 + 00, the net pressure 
rise along the centre line is zero, i.e. 

Pl(0O, 0,O) - 0. (35b) 

Thus for very wide mountains, where p >> LR and uo(x, 0, 0) + 0, (35) shows that on 
the centre line the rise in pressure over the whole length of & caused by the turning of 
the wind (i.e. u1 dx) is much greater than the effect of the streamwise deceleration 
(i.e. -uo), and exactly balances the drag force (I::, F dx). 

(iv) Vertical dejection. Where x >> LR: 

CJO(0Ol Y * z )  

Note that, to leading order, the vertical displacement is antisymmetric. Also note (as 
with pressure) the airflow rises/falls as much upwind as downwind of the mountain i.e. 
ao(x = 0, y ,  z )  = $T:,(~o, y,  z ) ;  see Fig. 5(a) and (b). 

The maximudminimum values (which are singular for our particular idealization 
of the hill's resistance, even far downwind of the mountain) occur where y = f p / 2 ,  
z +  1. 

cD [ i I n ( ( ' ~ 1 ) 2 ] + - l n ( l + 4 L ~ / p 2 )  1 
2 ~ o m a x , m i n  - *- 4 n p  2 

In reality the solution near the mountain where z - 1, is determined by the [T 
with thickness F H ,  so that 

- 
CD 

4nB 
oomax,min - f - Iln(2/F) 1. 

Near the tops of very elongated mountains, where p / 2  >> LR, as x/ILR + 00 

(374 

layer 

except very close to the edge (within one half length), when (37b) is the local solution. 
Note that when (yI >> p/2, in this case too, a0 0: ( l ~ l ) - ~ .  The first-order displacement 
01, given by (23) is symmetrical in y. The decrease of 01 downwind when x >> ILR and 
x >> p/2 ,  is given by 

The height at which a1 reaches its maximum value zmx is of the order of x/LR. 

( d )  Velocity perturbation caused by '1iB forces' 
If the first two terms of the asymptotic expansion for G defined in section 2(d) are 

substituted into (14) for 6>R and the same expansion of the lift affected components u ( ~ )  
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is applied, then 

where 

U F )  = ln(c + Ja2+b2+c2), (40b) 
(L) bc uo = 

(a2 + b2)(a + b2 + c2)1/2’ 

and a ,  b, c are defined in terms of X ,  Y ,  z in (18b), and ??b, c~~ are defined in (1 1) .  
Thus, as in a, the resistive forces at the edge of the mountain induce an extra 

symmetric velocity defect within the wake. But now, because of Coriolis effects, these 
forces produce a velocity speed-up outside the wake if the mountain is wide (i.e. 
,t? 2 LR). But, unlike the speed-up produced by the drag forces, this lift-induced speed- 
up decays downwind when x >> 8/2. 

The asymmetric first-order term up’ is proportional to the leading-order transverse 
velocity uo, so that using the solution (30b) and the estimate of C L ~  in (16b) leads to 
an acceleration of the flow in the streamwise direction upwind of the hill, reaching a 
maximum at x = 0. Thus u ( ~ )  contributes to the speed-up at the edge of the mountain 
(where y II 8/2) by about 

and reduces the speed-up over the right-hand half of the mountain with a maximum 
value near the edge. In the case of very wide mountains, where > LR - 10 and 
C L ~  - f . CD - f . BUo, this asymmetric speed-up is of the order of UO. 

This asymmetric speed-up decreases downwind over a distance of the order of ILR, 
when the streamwise perturbation velocities in the wake flow become more symmetric. 

One of the implications of the significant asymmetry in the streamwise speed-up 
over the mountain with higher speed where y > 0, is that the local streamwise velocity 
UO( 1 + u + u(~)) and therefore the local Froude number U * / ( N H )  are both greater on 
the left-hand side of the mountain where y > 0. %is leads to a deeper top layer [TI and 
stronger lee wave motion in the top layer on the left-hand side. 

- 

4. PHYSICAL INTERPRETATION OF THE MAIN RESULTS 

The complicated pattern of perturbations to a stratified rotating flow caused by a 
porous mountain (and, by extension, a solid mountain) can be explained with the aid of 
the schematic diagrams in Figs. 6 and 7 showing the flow patterns and vectors of the 
vertical vorticity w. 

The terms in (4g) correspond to three quite clear contributions, which are expressed 
in terms of the changes to wz and to the change in the PV, A (  P V ) ,  

Am = Ams + AWD + AWL (4 1 a) 
Perturbation Vorticity Shed vorticity Bound vorticity 

VOhCitY stretching caused by caused by a 
resistive force transverse force density 

Note that the change in PV along streamlines is given by 

A ( P V )  = Am - Am,. 
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Figure 6.  Schematic diagram of the significant Coriolis affected perturbations around mountain flows when the 
Froude number F << 1 and the Rossby number RO >> 1: (a) three-dimensional sketch, (b) plan view. See text for 

definitions and discussion. 
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Figure 7. Schematic diagram of the perturbation of vertical vorticity around a mountain when the Froude number 
F << 1 ,  and the Rossby number RO >> 1 ,  showing vorticity from earth's rotation Ams, shed vorticity AWD, caused 
by drag forces, and vorticity AWL, arising from lift or transverse forces. Note: streamwise and cross-stream 
accelerations designated (a) are caused by the stretching Ams in in the approach flow; those designated (b) 
are the streamline deflections in a, caused by rotation and drag and by the bound vorticity A%, including 
that caused by local edges; (c) shows changes in streamwise perturbation caused by Ams and AWD. See text for 

definitions and discussion. 

Here the first two mechanisms in (41) play a significant role outside the immediate 
region of the mountain or region of resistance, but the second mechanism is only 
significant downwind of the resistance because this is the only region, i.e. the wake, 
where there exists shed vorticity and therefore a change in PV. The third term is only 
non-zero within the body for a porous body, or on the surface of the body for certain 
solid bodies. This vorticity field induces a net circulation field around the mountain if 
there is a net sideways force acting on the mountain, i.e. a lift. This circulating velocity 
in the x-y plane decreases away from the mountain. We return to the explanation of 
AWD and AWL as part of our description of the flow. 

Note that this equation is not sufficient in itself to explain everything! We also use 
where relevant the momentum equations (4). 

As the flow approaches the mountain, its resistance (or blockage) causes u to de- 
crease (u < 0) and the pressure to rise. Because of the slow decay (u o< r - l )  of the 
perturbation, near the mountain even small Coriolis effects (i.e. Ro >> 1) cause the per- 
turbation pressure to be very large; this means that the perturbation field has to decrease 
faster over the Rossby deformation length LR.  Also, as a result of Coriolis forces there 
is a positive lateral pressure @play > 0). This produces an upward displacement of 
streamlines of 0(S1 H )  on the left-hand side of the mountain and a downward dis- 
placement on the right. This causes an asymmetric vortex-stretching so that 

upwind of the mountain, the other two vorticity generation terms in (41) being zero. This 
in turn distorts the flow, so that the blocking (i.e. -u) is decreased and the barrier jet (i.e. 
Ivl) is increased as a result of the Coriolis effect upwind of the mountain. Even if the 
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width of the mountain is significantly greater than LR (i.e. >> LR), the upwind flow 
is weakly blocked by the mountain over a distance upwind of the order of BD, but the 
most intense blocking and the formation of the barrier jet occurs along the upwind side 
of the mountain within a narrow region q ,  of width LR (-100 km) in the flow direction 
(Shutts 1998). 

The vorticity continuously shed from the mountain in the [MI layer is advected 
downwind and is confined to the wake. It is not suppressed by stable stratification, and 
therefore AWD is the main contribution to o in the wake. Its magnitude is effectively 
determined by the drag. However, the stretching of the vertical vorticity, Ao,, depends 
on the dynamical interaction set up by AOD. As with the upwind flow, the transverse or 
geostrophic pressure gradient generated by Coriolis forces, i.e. ( a p / a y  > 0), is balanced 
hydrostatically by vertical displacements (aa /ay  > 0). The main linear effects are the 
stretching of the background vorticity to produce positivehegative Am, either side of the 
wake (these could be described as ‘banners’ of enhanced PV resulting from the Coriolis 
effects), the vorticity acceleration outside the wake, and a reduced velocity defect in 
the centre of the wake. Note that the vortex lines arch over the wake from one side to 
the other. The depth of the wake is approximately x*w+/Uo: here w+ is the vertical 
velocity which, by continuity, is of the order of u+H/LR, where U+ is of the order of 
the velocity defect Uo. Hence the upward slope of the wake boundary is of the order of 
H / L R  which typically is of the order of 

The third term in (41), the lift term, is effective over a distance of order D outside 
the body if over the whole resistive region there is a net transverse force on the flow 
(see section 2(d)). Because there is then a net circulation r set up, i.e. l/ Aw dx  dy = 
r = Jf G dx  dy, the integral being defined in any horizontal plane below the top of 
the mountain. This could be caused by an asymmetrical cross-sectional shape e.g. like 
that of an aerofoil. We recall that the reason why bound vorticity can be created by a 
transverse force is that when the flow is started vorticity is shed downwind. Thereafter 
there is no further shedding of vorticity caused by this force. But if ffA G dx  dy is only 
non-zero when the integral is taken over a partial area A ,  of the order of D2,  then AWL 
only affects the flow locally. Thus if there are strong transverse forces at the edges of 
the mountain, they can affect the flow in these regions. 

It has been noted (e.g. Smith 1979) that transverse forces can be caused by the 
inertial forces associated with the fact that the flow around the mountain takes place on 
a rotating earth (see also Magnaudet and Eames 2000). This leads to a value for G of the 
order of c, which is not significant for the parameter range considered here but could be 
for very large mountains where RO - 1. For the porous mountains there are significant 
transverse forces caused by the horizontal transverse velocities (v ) .  Their magnitude 
in relation to the streamwise drag is of the order of v /Uo .  As explained above, these 
transverse components may be enhanced by the Coriolis effect. Because of the vertical 
spreading of the velocity perturbation in the domain a, caused by the Coriolis forces 
(or rotational waves of very long length-scale) this circulation induces velocities that 
decrease away from the mountain much more rapidly than l/r-in fact the decrease is 
proportional to l / r3 .  This contrasts with the persistent effects of shed vorticity caused 
by resistance in the streamwise directions, i.e. the second term in (41a). 

In physical terms the result is that at the outer edges of an elongated mountain where 
v is positive and negative either side of the centre line (for y 2 0) the positive transverse 
resistance force (or ‘lift’) on the mountain leads to an inward transverse force, and 
therefore negative (anticyclonic) and positive (cyclonic) vorticity where y 2 0 (Fig. 7). 
This adds to the drag-induced velocity (vo), sweeping round the edges of the mountain. 

which is very small. 
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However there is a larger-scale effect on the flow caused by the net rotationally induced 
turning of the wind (u1) as it passes over or through the mountain. This induces a net 
negative transverse force on the flow and therefore a negative circulation r < 0. Thence 
an asymmetric streamwise perturbation u p )  which amplifies the along-wind speed, i.e. 
Uo + u f ,  over the left-hand part of the mountain, and amplifies the transverse wind 
speed, i.e. u f ,  along the front of the mountain. The anticyclonic circulation induced 
by rotational transverse resistive forces (G < 0) also has an effect on the height of the 
streamlines, CT. Inspection of (14c) shows that, since (-aG/az) < 0, there is a general 
uplift of CT on a scale of the order of ILR (cf. Smith 1979). As (41) shows, this then 
slightly reduces the circulation (a second-order effect). 

5.  COMPARISON WITH NUMERICAL SIMULATIONS 

The only extensive numerical simulations in a clearly defined flow with low IF and 
finite Ro are those of OB l,OB2; they studied the flow over an isolated mountain with a 
rounded shape having a half-length (D) in the flow direction of 40 km, and half-width 

in the perpendicular direction of 200 km. The height H is the variable parameter in 
their simulation, ranging from 1000 to 5000 m. The incident flow was steady. For some 
simulations their surface was assumed to be smooth, but in others there was a surface 
roughness. The ‘aerodynamic’ roughness length, 20, on the mountain top was effectively 
10 cm or 25 m, but in all cases it was reduced to 10 cm on the flat terrain upwind and 
downwind of the mountain. The flow was calculated without and with turbulent shear 
stresses. The Froude and Rossby numbers for the cases we consider here are IF = 0.37 
and 0.22, with RO = 00 and 2.5 ( E  = 0.4). Note that the grid elements have a scale Ax, 
Ay of 10 km. 

The first point to note is that for this large mountain (which is a model for a ‘chain’ or 
‘envelope’ of mountains) the Rossby-scale LR ranges from about 150 km to 450 km as 
H varies. Therefore LR is comparable with the transverse half-width of the mountain. In 
order to make quantitative comparisons with the theory, we have to estimate the effective 
magnitude and cross-sectional profile of the resistance of the mountain. Some graphs 
referred to here were published in OB1, OB2, but some additional computations are 
presented especially for the case where IF = 0.22 (see Figs. 2 and 3). 

Let us first consider the characteristic effects in the near field or DF. Figures 2 and 
6 of OB1, OB2 respectively and our Fig. 8 show that when IF 5 0.5, for both infinite 
and finite Ro, in the top layer [TI the streamlines are displaced vertically with strong 
down-flow on the lee side, and that below this in the middle layer [MI the vertical 
displacements are small. The thickness of [TI on the lee side is about 1.5IFH. Internal 
gravity waves propagate nearly vertically upwards showing that the flow in [TI is similar 
to that over a low hill, with low slope and with low Froude number I F D ~  (based on the 
length DT of the cut-off hill), i.e. I F D ~  = Uo/(DTN) 5 1. There is also some downward 
propagation, which affects the matching between the flow in [TI and [MI, (NPH). 
Figures 2 and 1 of OB1, OB2, respectively, for the horizontal and surface flow show 
the large separated back-flow region extending across the width of the mountain and 
downwind to the end of the computational domain (which may well affect the size of 
the recirculation zone). These diagrams also show how the flow splits. 

When we come to observe the differences in the computed flows with and without 
rotation, we can see some significant effects. Figure 1 of OB2 and our Fig. 9(a) and (b) 
show how the streamlines of the approach flow and the wake flow are diverted to the left 
(in the northern hemisphere) with a net displacement of the centre-line streamline Ay+ 
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Figure 8. Numerical simulation results for flow over an elliptical mountain, Froude number F = 0.22; Rossby 
number Ro = 2.5; showing isentropic surfaces (K) or flow streamlines on x ,  z planes parallel to the flow. (a) Left 

side section ( y  2: 20) ;  (b) right side section ( y  = -20) .  See text for definitions and discussion. 
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Figure 9. The same case as Fig. 8, showing plan views of velocity vectors and contours of velocity at the surface: 

(a) Rossby number RO = 00; (b) Ro = 2.5. 
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when RO = 2.5 and IF = 0.22, equal to about LR 2 450 km 2: /3 D. This agrees with the 
theoretical estimate of IFAyq(1) in (30) for an elongated mountain taking c ~ / 2 / 3  2: 3, 
as discussed below. The other striking Coriolis effect on the upwind flow is seen in 
Fig. 1 of OB2, where both the streamwise and transverse velocity components u ,  u are 
significantly greater near the windward slopes of the mountain. Upwind of the edges 
of the mountain they are greater than the approach wind speed Uo. For IF = 0.4, it is 
clear from OB2 that when Ro _" 2.5 the approach flow is not significantly changed until 
x* 2 -LR 2: -PO, whereas for RO = 00 this slow-down occurs further upwind where 
x*  = -2pD. Note that the leftward turn of the flow and the strength of the barrier jet is 
greater when IF = 0.4 than when IF = 0.2, as shown by (29). 

The centre-line value of u on the upwind side is about equal to Uo the upwind 
velocity. We note that for our model for an elongated porous mountain where S = 2.7, 
and G / 2 p  2: 1.0, (v1 + u?)) 2: 2/3Uo (by extension from (40)) for the flow outside 
the wake. 

It is noticeable that in the study of the flow over an axisymmetric body at this value 
of Ro, no asymmetry is visible (Peng et al. 1995, Fig. 3). But for elongated mountains 
the surface streamline asymmetry is very obvious. The effects of the rotation on the 
horizontal wind speed and wind vectors are presented in Fig. 1 of OB2 and our Fig. 10(a) 
and (b) from 400 km upwind to 800 km downwind. 

When IF = 0.4 the effect of rotation leads to the increase of perturbation wind speed 
(i.e. u s )  relative to the approach wind, of 1.5 Uo (i.e. a 150% increase) on the left, 
outside the recirculating wake (at about 2 half-widths), and of 1.0 Uo on the right (at 
about 1.5 half-widths). When F = 0.2, the wind speed increases by about 2.2 Uo on the 
left (at about 2 half-widths) and 1.5 Uo on the right (at about 1.5 half-widths). Note that 
this increase, which extends for several mountain widths downwind, can be related to 
the maximum velocity defect. Similar effects have been noted by Doyle and Shapiro 
( 1  999). 

To simulate the magnitudes of the defect and of the excess perturbation in the wake 
region, using the porous mountain model it is necessary that the magnitude of the drag 
coefficient parameter should be increased so that (with reference to (26)) G / 2 p  21 3. 
We note that the average of the velocity increases are, therefore, about 0.5 to 0.6 of the 
magnitudes of the velocity defect in the wake for F = 0.4, 0.2. In fact, the predicted 
ratio of the excess to the defect perturbation for the ideal porous mountain is about 0.5, 
which is quite close! 

The speed-up outside the wake is not symmetric, which our model suggests is caused 
by the lift force acting on the elongated mountain, and is of the right order of magnitude. 

The variation of surface pressure without and with rotation are given in Figs. 11 
and 12 of OB2 and here in Fig. 10(a) and (b). The large asymmetry of the perturbation 
pressure (p)  is obvious. In OB2 the largest value of the normalized pressure difference 
in the wake denoted by Apw = { p ( x ,  y 2: p/2,0) - p ( x ,  y = /?/2)0} 2: 1.3 S, where 
S = 1/F = 2.7. In Fig. 1 l(b), the largest difference 2: 1.8 9; but taking the average over 
downwind distances Apw -N 1.1 S. This difference is taken across a transverse distance 
of the order of /?D(2:400 km) in the first case and (1.2 PO) 500 km in the second case. 

to leading order in the perturbation there is a 
geostrophic balance, in which case Apw = Apwg, where Apwgs 2~ q?(-ii), where -ii 
is the average defect velocity (2: -1.25, -1.5 for F = 0.4, 0.2). We find Apw,, 2 
(1.9, 1.7) S for the two cases. This is consistent with the theoretical model of the porous 
mountain (in 31; assuming cD/2p -N 3) which yields Apw 2 2 S for these parameters. 

There is, of course, a symmetric component to the pressure distribution across the 
mountains. The pressure drop across the mountain, APM, on the centre line for the 

Our analysis shows that in 
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case of F = 0.4, (Fig. 7 of OB2), is equal to about 3S when Wo = 2.5, and 2.3 S when 
RO = 00. 

If this pressure drop is proportional to the strength of the wake perturbations 
(characterized by the parameter CD/B 21 6 for best fit) our porous model suggests from 
(10) that APM = G/B 1: 6 1: 2.4 S for the case of F 2: 0.4. 

Note that in our conceptual model the pressure drop between the upwind and 
downwind sides of the mountain, APm, is controlled by local processes so that 

However the asymmetric pressure across the wake is greater (when S >> l), being 
produced by Coriolis forces over a long range. Its approximate value is 

C D  
ApW"--S. B 

But the numerical results in Fig. 10(b) indicate that when B >> 1 and F << 1, in the 
near field, the pressure drop and the drag are as large as the far-field values. This is 
because the rotational forces produce such large lateral pressure changes that they affect 
Apm, possibly through mechanisms associated with the lift correction term u ( ~ ) .  

6 .  DISCUSSION OF MAIN RESULTS 

The idealized perturbation model presented here approximates many of the main 
features of the stratified rotating flow over and around mountains when F << 1 and 
RO >> 1. However since the idealized mountain is porous, the model only describes 
approximately the barrier jet on the upwind side of the mountain analysed by Shutts 
(1998) and the reverse flow in the wake computed by OBI, OB2. In this concluding 
section we discuss a few points about related models and limitations of these models. 
We also consider how it can be applied more widely to mesoscale flows. 

The results for the pressure variations on the scale LR are related to the vertical 
displacement o and to the streamwise velocity perturbation because of the hydrostatic 
and geostrophic balances see Figs. 5(b) and (1 1). However, they can also be explained 
in terms of the integral of the Coriolis acceleration, which only converges in the outer 
region, on the LR scale. By contrast with the high-Froude-number flow discussed by 
Smith (1979) and Buzzi and Tibaldi (1977), here at low Froude number the antisym- 
metric pressure does not decay in the wake downwind. This is because of the persistence 
downwind of the wake (or PV anomaly), and the geostrophic balance which leads to 
higher pressure perturbation on the left ( y  > 0). It can also be explained in terms of 
differential vortex stretching by the upward and downward displacement of streamlines 
each side of the wake (see section 4). The overall change in the asymmetric pressure, 
over a distance LR, is of the order pooU$F-', which surprisingly is much greater than 
the dynamic head Ui. The magnitude of this pressure drop is independent of the Rossby 
number (see also Shutts 1998). If there is significant vertical numerical diffusion in a 
computational model, the wake diffuses on a scale less than LR, and then these large 
lateral pressure gradients fail to be simulated. This may be the reason why they have to 
be parametrized artificially in N W P  models (Cullen, personal communication). 

The symmetric pressure in the model is of the order of the dynamic head (1/2pYUi) 
and decays downwind, but the actual magnitude of the symmetric pressure drop in the 
numerical simulation of OB2 is comparable with the antisymmetric pressure change. 
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Thus the symmetric drag force per unit width, that was assumed by Lott and Miller 
(1997) to be of the order of 1/F, is consistent with the magnitude of the numerical 
simulations for the symmetric drag force. But it is not consistent with the simulation, 
nor with our theoretical model, for the large antisymmetric pressure changes. For a wide 
mountain or mountain chain both these symmetric and antisymmetric pressure changes 
develop close to the mountain (certainly within the scale of 50 km that is typical of the 
grids used in NWP models). 

As regards lift forces on the mountain and changes of direction of the approach 
flow, in our model it is assumed that the force on the mountain is related to the local 
direction of the approach flow. Thus if the outer flow leads to a transverse velocity 
across the mountain, as it does in our model (of the order of F2/Ro), this causes the 
resistive force to have a transverse component (in the - y  direction). This induces a 
weak anticyclonic motion around the mountain and a symmetric upward displacement 
over the whole mountain, as also occurs in high-Froude-number flows (Smith 1979). 
Note that, as is observed for an elongated mountain, a small change in the approach 
flow direction leads to a large change in the flow around the mountain, and possibly and 
aerodynamical (rather than rotationally) determined lift force. 

What are the consequences of neglecting turbulent shear stresses? 

0 Models of neutral and stratified turbulent flow over hills (e.g. Hunt and Snyder 
1980; Hunt and Richards 1984; Wood 1995) have shown how for low levels of surface 
roughness the location of separation, a distance Xsep downwind of the summit, is approx- 
imately equal to Xm,, the location of the maximum in the local pressure perturbation 
Ap (rather than its gradient). However, for very rough surfaces, or when zo is of the 
order of 1 (as occurs in the flow over any real chain of mountains, e.g. where zo - 10- 
30 m), or for very sharp mountain tops (e.g. Castro et al. 1983), Xsep is less than Xmax 
and separation tends to occur quite close to the top of the mountain. 

0 The numerical simulation in Fig. 12(a) for a very rough mountain suggests that the 
lee wave behaviour is disrupted by the very rough mountain top, and that the downwind 
flow in [TI is mixed with that in [MI. Since the distribution of the drag profile or shed 
vorticity of the mountain (subsection 2(a)(iv)) determines the form of the far wake, this 
is why it is also sensitive to the level of mountain roughness and the shear stresses in the 
flow. 

0 These shear stresses also affect the internal processes in the breaking waves, and 
in shear layers where the flow separates and where the top-layer flow meets the middle 
layer, but probably do not change the depth of the top layer from being about equal to 
PHI. 

0 Shear stresses affecting the lateral spreading are mainly caused by the large-scale 
horizontal fluctuating motions in the wake (with an effective intensity of, say, 10% of 
the mean flow). They determine the peak negative velocity and affect the asymmetric 
pressure distribution in the recirculating wake. This explains the larger value of c~//3 
needed to model the wake. These stresses only change the width significantly (say by 
about 100%) over a distance of more than 10 wake widths. 

0 Finally, our model indicates that the streamwise perturbations, u f ,  persist down- 
wind and only decay slowly, unlike the perturbation produced in the transverse velocity 
and unlike all the velocity fluctuation in high-Froude-number flow. In practice this per- 
turbation is controlled by the shear stress at the surface and Coriolis effects through 
the well established ‘spin-down’ process. An Ekman layer is formed with depths of the 
order of 6 - 0.2 u,/f 5 200 m if u* 5 1 m s-’, where u* is the friction velocity. This 
sets up a vertical motion, and induces opposing motions within a mixed-layer depth of 
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say A - 1500 m over a distance 

63 1 

A* 1 
xw - - .  -U - 103km. J f  

Hence the wake effects of a chain of mountains can extend downwind over a significant, 
synoptic distance. 

The essential results presented here may be applied to mesoscale flows; they are 
applicable to any resistive region that causes a momentum deficit downwind and deflects 
the flow up to a finite height, H, in the stratified atmosphere (or oceans) on the mesoscale 
where IF < 1 and Ro > 1. The most significant effects occur when the lateral scales fi  D 
of the disturbances are of the order of the Rossby deformation distance, i.e. 

These mesoscale ‘disturbances’ might be a mountain, a mountain range, or mountain 
and valley system (e.g. the Rhone Valley between the Massif Central and the French 
Alps where H > I .5 km, or the Cheshire ‘gap’ in England where H - 200 m), or a large 
area where the roughness changes over a finite area (e.g. a peninsula surrounded by sea, 
such as Kent and the English Channel in a north-easterly stable wind) or a mesoscale 
convective cloud system moving relative to the crosswind. 

In all these cases one finds not only the velocity defect (as is expected when 
there is no rotation) but a comparable speed-up outside the wake or velocity defect 
region that cannot be explained by any other mechanism. (The weather forecaster’s or 
climatologist’s explanation (e.g. Manley 1952, p. 185) of wind ‘channelling’, drawn 
from the analogy of city streets, is not applicable when the channel is 10- to 100- 
times wider than the mountain either side!) Further detailed study is necessary, but 
our explanation, based on the ‘recovery’ outside the defect region of the geostrophic 
pressure change, is consistent with the observations of the northerly Mistral in the Rhone 
Valley and the speed-up of the north-east wind in the English Channel, which both occur 
when the elevated flow is stable. 

The other major point of our analysis is that, as a result of rotation, as the air flow 
approaches the disturbance the air flow rises on the left (or the right facing towards the 
disturbance) in the northern hemisphere, and descends on the right. This contributes to 
systematically wetter weather on the left-hand side of mountains/roughness change in 
the northern hemisphere (if there is a moist prevailing wind), and dryer weather on the 
right (e.g. compare the wetter north sides of Cumbria and other peninsulas to the dryer 
south sides). The wetter weather on the righthouthern flank of New Zealand’s southern 
Alps is consistent with this concept. (Most climatological books which focus on the 
upwind and downwind effects, do not mention the lateral variations and never mention 
Coriolis effects! e.g. Manley 1952, pp. 124-125.) 

This concept can also be applied to well developed convective systems in a stable 
environment, which have a similar effect on the ambient flow as mountains. They tend 
to move more slowly than the wind because their updraughts contain low-momentum 
fluid from near the boundary layer. Therefore, like chimney plumes and jets in cross- 
flows (e.g. Coelho and Hunt 1989) as informal observations from research aircraft have 
confirmed, these systems tend to block the flow on their upwind side and shed vorticity 
in their wakes downwind. Where these systems are comparable to the Rossby deforma- 
tion scale (50 km), because of Coriolis accelerations, they induce rising/descending air 
on the lefdright. Therefore, in a moist atmosphere further convection is likely on the left 
and less convection on the right. 
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In the detailed study by Browning and Ludlam (1962) of the ‘Wokingham’ storm 
this point was made quite forcibly (their ‘right’ is our ‘left’ because they looked towards 
the storm). Although they commented that the effect might be attributed to Coriolis 
acceleration, they gave no explanation, nor did they suggest that this is a widespread 
phenomenon (see also Kropfli and Miller 1976). Of course, the results of this paper are 
also applicable to other planets where mesoscale phenomena with rotational effects may 
be even more important. 
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