

High-resolution simulations of mountain weather improved with observations from small unmanned aircraft

Hálfdán Ágústsson, Haraldur Ólafsson, Marius O. Johannessen, Joachim Reuder, Dubravka Rasol and Ólafur Rögnvaldsson

Video footage from national TV news SumoFrett.avi

The observations

- Approx. 10 days of with the SUMO (Small Unmanned Meteorological Observer) in Southwest-Iceland in 2009.
- In addition, surface based observations were available at a high temporal and spatial resolution.

The SUMO observes winds, temperature, humidity, pressure

Up to ca. 3 km.

The weather on 15 July 2009 at 12 UTC

The weather on 15 July 2009 at 12 UTC

Weak easterly winds in the lower troposphere.

Time of flights on 15 July 2009

13:27

13:48

12:15

11:19 11:47

12:57

14:18

Photos from location 2

Schematics of observed winds

Gravity wave activity is presumably accelerating winds down the leeside slopes of Mt. Esja with a maximum in wind speed near the surface close to Mt. Esja. The wind maximum weakens and thickens further away from Mt. Esja.

Simulated and observed surface winds on 15 July 2009 at 13 UTC

WRF at a resolution of 500 m forced with ECMWF-data on model levels.

Observed surface winds in red

The SUMO-data is incorporated into the WRF-simulation, via obs-nudging

Simulated flow in section across mountain

A major difference in flow pattern extending far above mountain top level

23 km

Wind speed, ranging from 0 to 12 m/s

Simulated and observed wind direction

Mountain Note that the second of the second

Height [m]

Simulated wind profile

One forecasting perspective Wind mills in complex terrain

Gravity waves are important for the wind climate!

See poster by Marius O. Jonassen et al.

Main conclusions

- We improve high-resolution atmospheric simulations using unique observations from aloft.
- The observations reveal unexpected winds in the boundary layer and lower troposphere.
- Indications of accelerated lee-side flow in spite of weak mountain top and boundary layer winds.
- Input of realtime in-situ SUMO-observations into operational WRF-simulations is under way.
- Further work includes:
 - Investigate the dynamics of the flow,
 - Increase resolution of grid, use 3D turbulence calc.,
 - More field experiments with the SUMO.

Simulated and observed surface winds at Kjalarnes, south of and near Esja

Non-zero surface friction

Wind direction

Wind speed

Simulated and observed surface winds on 15 July 2009 at 13 UTC

WRF at a resolution of 500 m forced with ECMWF-data on model levels.

Are the gravity waves important for the

Examples from an Icelandic glacier section across mt Wind and isentropes in

Simulated wind and isentropes in section A across Mt. Esja

Non-zero surface friction

Simulated wind and isentropes in section A across Mt. Esja

Zero surface friction

Simulated wind and isentropes in section A across Mt. Esja

Zero surface friction

Forecasting perspective – Windstorms

Ágústsson and Ólafsson, 2009